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ASYMPTOTIC THEORY OF THE FLOW AROUND AN OBSTACLE
BY A SONIC FLOW

A. L. Brezhnev and I. A, Chernov UDC 533.6.011

The first investigation of the problem of the flow around an obstacle by a gas flow whose velocity
is equal to the speed of sound at infinity was carried out in [1, 2], where it is shown in particular
that the principal term of the appropriate asymptotic expansion is a self-similar solution of
Tricomi's equation, to which the problem reduces in the first approximation upon a hodographic
investigation. The requirement that the stream function be analytic as a function of the hodo-
graphic variables on the limiting characteristic was an important condition determining the
selection of the self-similarity exponent n (xy-1 is an invariant of the self-similar solution}.

The analytic nature of the velocity field everywhere in the flow above the shock waves, which
arise from necessity upon flow around an obstacle, follows from this condition. The latter was
found in [3], where one of the branches of the solution obtained in [1] was used in the region
behind the shock waves. The principal and subsequent terms of the asymptotic expansion
describing a sonic flow far from an obstacle were discussed in [4], where the author restricted
himself to Tricomi's equation. Each term of the series constructed in [4] contains an arbitrary
coefficient (we will call it a shape parameter) which is not determined within the framework of

a local investigation, and consideration of the problem of flow around a given obstacle as a

whole is necessary in order to determine these shape parameters. K follows from the results of
[4] that the problem of higher approximations to the solution of [1] coincides with the problem of
constructing a flow in the neighborhood of the center of a Laval nozzle with an analytic velocity
distribution along the longitudinal axis (a Meyer-type flow). Along with the Meyer-type flow in
the vicinity of the nozzle center, which corresponds to a self-similarity exponent n=2, two other
types of flow are asymptotically possible with n=3 and 11, given in [5]. The appropriate
solutions are written out in algebraic functions in [6]. The results of {5] show that the condition
that the velocity vector be analytic on the limiting characteristic in the flow plane is broader than
the condition that the stream function be analytic as a function of the hodographic variables, which
is employed in [1, 2, 4]. Therefore, the necessity has arisen of reconsidering the problem of
higher approximations for the obstacle solution of ¥. I, Frankl'. It has proved possible for the
region in front of the shock waves to use a series which is more general than in [4], which
implies the inclusion of an additional set of shape parameters. The solution is given in the hodo-
graph plane in the form of the sum of two terms; the series discussed in [4] corresponds to the
first one, and the series generated by the self-similar solution with n=3 or with n=11 cor-
responds to the second one.

1. Two dimensional irrotational flows of an ideal perfect gas are described in the transonic approxi-
mation by the equations [7]

—uu, +uvy, =0, u, —v, =0, {L.1)

where x and y are the reduced Cartesian coordinates and u and v are the dimensionless components of per-
turbations of a uniform sonic flow.

Saratov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 99-107, May-
June, 1979. Original article submitted April 17, 1978,

0021-8944/79/2003-0337$07.50  ©1979 Plenum Publishing Corporation 337



System (1.1) reduces on the hodograph plane to Tricomi's equation

—UYoy + Yuu = 0. 1.2)
The coordinate x is found from the relationship
. dz = uy,du + y,dv. (1.3)
Equation (1.2) possesses the class of self-similar solutions
Y = vMy(t), t = ol)/ V¥ — (@), (1.4)

where A is a parameter uniquely associated with the self-similarity exponent n= (A +%y)/A and t is the self-
similar variable,

The function f{t) satisfies the ordinary diffei-ential equation v
(1 — 5 f, + t{2h — (21 + 4/3) t’]fx-{- AMA—=1Dfr=0, (1.5)

whose general solution is expressed in terms of the hypergeometrm functions (A, and B, are arbitrary con-
stants)
fh = ArF(—02, M2 + 116, 1/2; ) + Byt'-*F(—M2 4 1/2, M2 + 213, 3/2; 7). (1.6)

¥ A) =0, then (1.4) and (1.6) determine 2 flow which is symmetmc with respect to the x axis.

From (1.3) we find . ] '
, T = M3 gy (), gy = (3I2)3 (M + 1/3)=1 (172 — )3 (M + tf;) - a.n

2. The flows described by the solutions of Eq., {1.2), in which the condition of analyticity of the velocity
field is satisfied on the limiting characteristic which is the boundary of the transonic zone, are called natural
or Nflows. The condition of naturalness determines a wider class than the condition of regularity of y on the
line t= » in the hodograph plane. They were investigated in [8] in a class of self-similar N flows.

At first we will restrict ourselves to the study of N flows which are symmetric with respect to the xaxis
(NS flows). Below are considered non-self-similar solutions of Tricomi's equation which are series in the
self-similar components with the principal term describing an NS flow without limiting lines in the transonic
zone.

We will discuss the problem of higher approximations to the solution of [1}.  We present the desired
solution of Eq. (1.2) in the form
¥ o= vy -+ vHy. 2.1)

Let us determine the values of the exponent A appearing in the second term for which (2.1) determines an
NS flow. For definiteness, we will consider the region of the hodograph bounded by the negative semiaxis of
u and the limiting characteristic v= 2/3u3’2, with v>0. We write the general integral of Eq. (1.5) in the form

fa = CRF(—=M2, —M2 + 172, —h + 5/6; 1) TDUFQ2Z - 23, 172 = 16,1 4 Tt 172, v - =2 — 13, (2.2)
where C) and Dj are constants associated with A) and B) by a nondegenerate linear transformation, and
v=£0, +2, +4,..., - {2.3)

If p is an even number, then (2.2) should be replaced by an expression containing logarithmic terms.

In [1, 4] the exponents A are found from the symmetry condition A)=0 and the regularity condition of the
solution (2.1) in the hodograph plane D) =0. In order to discover exponents A which are different from the ones
indicated in [1, 4], we will consider the case Dj = 0.

Using (1.3) and (2.1), we find .
z = v—43g. 53 -+ M3, (2.4)

From (2.1) and (2.4) we obtain the expansion §=xy"4/5 in powers of y with coefficients depending on t:

§=f;o(t>+y L)+ y? L)+ .. k= —3N/5—1,

o= Bosya ZHf5, b= — (419) Fuf =P -+ guf i3, (2.5)

Lo = (9/5 4 20) (2/5) 3372 — (4/5 + h) ol Ty, L
We will expand the function &; into series as t— «,
Lo= oo+ Loat= + ..o, bi = Lip + Gat” + Lt 4. 2.6)
where fij are constants expressed in terms of C_§/3, A, Cy, Dy.

We note that £, is an analytic function of the variable t‘z, since D‘§/3= 0.
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We investigate the case =2 <y <0(—~Y <A <%). Using (2.6), we rewrite (2.5) in the form
L = Zo(y) + Za(N)t> -+ Zao(y)t—2 + . . .,
Zo = oo + Tioy® + Cooy® + .. .,
Zy = Luyh + Lay® + .. .
Zs = Loz + Loy + Zooy®™ + .. ..
On the limiting characteristic t=«; therefore, ¢ =Z, is the equation of the limiting characteristic in the
x, y plane. Inverting (2.7), we find the expansion of the quantity t~2 in the vicinity of £=2Zg
,.;vi'.'_z - Z%/v € — Za)—Z/' ...

(2.7

(2.8}

On the other hand,

12 = 1 — 4ud/(O0Y). @.9)

Let u, v be analytic functions of x, y on the limiting characteristic. Then it follows from (2.8) and (2.9)
that the exponent —2/y should be a natural number:

—2/v =i, A=1/i —1/6,i =1, 2,...

Even values of i correspond to flows for which the limiting characteristic is a branching line in the hodo-
graph plane. Since the basic solution with A=—9% does not possess this property, the continuation beyond the
limiting characteristic is not determined for the corresponding sum. The value i=1 is unsuitable, since the
condition (2.3) is violated. With i=3 we obtain A=Y i.e., the correction in (2.1) corresponds to the second
asymptotic type of flow in a two-dimensional nozzle [5]. Let i=5; then A= Y49, and the correction corresponds
to the third asymptotic type of flow in a Laval nozzle [5]. '

¥i=17,9, 11, ..., then A=Yy, =Yi5, =%, ... . Nozzle flows with a straight sonic line which were studied
in [9] correspond to these values. The absence of the region of the hodograph between the sonic line and the
limiting characteristic in these flows prevents their use as a term in (2.1).

Now let —oo << v <C —2(5/6 << A <C ). Inverting (2.7), we obtain

2 = ZA(E— Z,) ~ Z1Z\zz/2——i (E—Zgy™v2 4 ...

If the velocity field is analytic on the limiting characteristic, the exponent —y/2 should be a natural number;
however, the condition (2.3) is violated in this case.

Therefore, we obtain that (2.1) determines an N flow if )»=1/6 and Y.

3. Higher approximations for self-similar solutions (1.4) with the exponents A=—%, Y, and Y4, are con-
structed, each of which contains a shape parameter. Thus the NS flow described by the series '
gy = VM fagy, Ay = — 3/3 4+ 2i/3 @.1)

was investigated in [4]. Here summation is carried out over the repeated subscript i, which takes integral
negative values not equal to 1 and 2. Since Djj=0 in 2.2), which corresponds to (3.1), the coefficients fj
(and also g i, are analytic functions of the variable t2(t — ).
A flow in a doubly symmetric Laval nozzle described by the solution
Yo = 0*2fajp, hjy = 1/6 + /3 3.2)

was investigated in [10], where j is an integral nonnegative summation index not equal to 2, 5, 8, i1, ..., which
corresponds to the condition (2,3). We note that y(kj?) ==2(j+1)/3; therefore, fy\j2, and also ngz, are analytic
functions of the variable T=t"73 (T1—0).

We will consider the solution of Eq. (1.2)

y3 = Ui‘k3 f}'k3, }"h3 = 1/30 + k/s’_. (3.3)
where k is an integral nonnegative summation index not equal fo 4, 9, 14, ... . Since p(Ayy3) =—2(k +1)/5, fkks and

Bk, are analytic funct;ions of the variable 7=t 75. It is shown in [10] that (3.2) and (3.3) determine NS flows in
a particular case,

4. Using the linearity of Tricomi's equation, we sum up the solutions y; and y,, obtaining
y = v5Pfg5s + M1 + VW im - Vs ol 4.1)
The coefficients f,/e, fy/5s ... depend parametrically on t [6, 10]:
b= 23794 4 )(—s* + 21/ 3 + 1)08,
o fus = Ho(s + Eo)(s® 4- 5)-1/8,
fia = Hu(s® — V3Eist + V'3s + E)(® + 9)-172,...,
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Fig. 1

Here s is a real parameter which varies within the limits 0 <s < »; Hj and E; are arbitrary constants, and Ej=
E;=...=0 for symmetric flows. ’

The functions I_g3, i3, ... are of the form ]
f-s3 = (9/16)B_5.t5/3[(1 — t)1/3(1/o + t) - (1 +- t)1/3(1/3 — i),
fin = (3/2)Bl/at—1/3[(1 + 9 — (1 — 1)L
We will show that {4.1) determmes an NS ﬂow Usmg (1.3) and (1 7, we f1nd
T = v4Pg_gs + 1,1/2g‘/‘3 + v*Bgys + v5i5gi + . 4.2)
The coefficients f_ya, 8-5/s Tyfes Tyfgs ... aTE analytlc functions of the variable T introduced in Sec. 3. Then
(4.1) and (4.2) determine x(v, %ﬁand y(v, 7) as analytic functions in the vicinity of the limiting characteristic
7=0 (v>0). If the Jacobian of the transformation J= 8(x, y)/8(v, 1) is different from zero in the vicinity of 7=0,
then it is possible to invert (4.1) and (4.2). The inverse functions v(x, y) and 7(x, y) are analytic on the limiting
characteristic. The function u(x, y) will possess the same property, since
u = (3/2)2/31;2/3(1 — T3, 4.3)
Let us determine the sufficient conditlons for which J =0 in the vicinity of 7=0 in the case of small
values of v. Let us represent J in the form A
T = —(3/220302%(c — )Nz, — Vit yo)@o + Vo)
Expanding xy, yy in powers of 7 with v fixed, we obtain
J = 012 2(3/2)13D ;o] — (5/3) Cg/sv=5/% + (1/6) Cy/t/5 -+ ...] + O(x).
If D,/G =0, and in addition
sgn (C-53C1) = —1, (4.4)
J = 0 in the vicinity of the limiting characteristic for sufficiently small fixed positive values of v. '

The results of the calculation of the characteristic lines in the case of flow around an obstacle are given
in Fig. 1. The flow (4.1) in which the first two (three) terms are kept is shown by solid (dashed) lines; S
denotes the sonic line, C denotes the limiting characteristic, I denotes the zero-inclination line of the velocity
vector, and P denotes the zero line of the flow calculated by integration of the equation dy/dx v. Several 11nes
of v=const are also shown. K was assumed in the calculatmns that
B_5/3 = 16/9, Bl/s = —4—1(2/3)2/3
Ho = —21/3-1/12(2 3/ 3)-1/4, Eo = 0.

5. We will construct a solution of the system (1.1), which corresponds to (4.1), with the help of an
expansion of the desired functions into series in self-similar components on the x, y plane. We will first use
coordinate expansions in powers of y with ¢ fixed:

w=y MU @), v=y TN @) b= ey, :
ko = 0, k1= —14/10, ks = —6/5, ks = —13/10, ka = —8/5, ' (5.1)
= —17/10, ks = —19/10, k7 = —2, ks = —11/5,...

4.5)

The values of k; are deter mined by the corresponding exponernts of the powers in (4.1). The functions Uj
and Vj satisfy a system of ordmary differential equations. - This system has a singular point ¢, which is
determinable from the condition 4U¥(z) = 9V0(1;c) The generalized parabola £ ={e is the limiting characteristic
of the system (1.1) for the self-similar solution ’
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u = y=BU(L), v = y=5Vo({). 5.2)

H all the functions Uj and Vy are analytic at the point ¢, then (5.1} determines the solution of the system
(1.1) which is analytic on the limiting characteristic.

An investigation of the higher approximations (5.1) shows that the functions Uj, Vj» ... are nonanalytic at
the point ¢.. However, one should not interpret this fact as proof of nonanalyticity of the velocity field deter-
mined by the hodographic solution (4.1). The cause of this apparent contradiction is explained by the fact of
the nonuniform validity of the asymptotic expansion (5.1), which is valid near the limiting characteristic,
whereas (4.1) is uniformly valid everywhere. Outside the vicinity of the limiting characteristic the expansions
(4.1) and (5.1) are equivalent. The singular nature of the expansion (5.1) near {=Z, arises due to the fact that
the system (1.1) is nonlinear, and upon perturbation of the self-similar solution (5.2) the limiting characteristic
deviates from the generalized parabola ¢ =¢., which is not taken into consideration in this expansion.

In order to construct a uniformly valid expansion, let us use the method of deforméd coordinates, expand-
ing the variable ¢ also together with u and v into a series in powers of y. The coefficients of the expansions
can be conveniently assumed to be dependent on t:

w=y U 1), v = g (1) ©-5
L=gML(), =01, 6.4

From {4.1), (4.3), and (5.3) we obtain
wp = (3/2)23 (1 — W 213wy = (2f5)uYy, i=1,...,7, 6.5

ug = (1/25)ugY3+ 3/2) w Y1, - .., Yo = Fuef Lhls, Yo = fusaftlia, -
Analogous formulas are valid for v;.
Making use of (4.1), (4.2), and (5.4), we find

Lo=g—spfZif 8 = (4/5) LY+ X, i=1,...7,

Ly = — (4/25) LY? + (310 X1V, . ., Xy=guef?10,, X, =gu3f_5,3t e

Let us convince ourselves of the fact that (5.3) and (5.4) determine a velocity field which is analytic on
the limiting characteristic. Actually, £; are analytic functions of ;
B = Liyvd, 1,7 =0,1,....
Then it is possible to rewrite (5.4) in the form of a power series in 7:
L=Zi )W, J=01,...,Z;(5) =Luyhi, i=0,1, ..., (6.6)
and £=Zgy(y) is the equation of the limiting characteristic. Inverting the series (5.6), we obtain 7 as an analytic
function of the variables ¢ and y (or x and y) on the limiting characteristic. According to the construction of

(5.5), uj and vy are analytic functions of 7; therefore, the velocity field (56.3) and (5.4) satisfies the analyticity
condition.

The symmetry condition is also satisfied if the corresponding partial integrals (Ajpj; = Ay, =) are taken
on the hodograph plane.
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Since the system of coordinates t, y is used in (5.3) and (5.4), it is necessary that the Jacobian of the
transformation I= a(z, y) /6(t, y) be different from zero. One can show that 1= 0 everywhere in the transonic
zone for sufficiently large y if the condition (4.4) is satisfied.

We note that in this construction the hodographic variable t plays the role of the optimal coordinate
defined in [11], since the use of it immediately results in a uniformly valid expansion.

6. Now let us consider the expansion (4.1), in which we set f=0. Then the chief term of the expansion

will be the nozzle solution with A=1/: .
y = M6 4+ VPN - VM A+ 6.1)

Repeating the discussions of the preceding sections, one can prove that (6.1) determines an N flow. The
results of the calculation of a nozzle according to the solution (6.1), in which the first two terms are kept, is
given in Fig, 2. The flow is analytic on the incoming limiting characteristic C~, and it continues with a weak
discontinuity beyond the characteristic C+, which originates from the nozzle center in order to avoid the
appearance of a limiting line between the characteristic C* and the semiaxis x > 0. The second term is
appreciable everywhere, and the continuation with a weak discontinuity constructed in [5] was used for the first
term.

The values of the arbitrary constants are given by Eqs. (4.5).

The corresponding solution of the system (1.1) in the x, y plane can be written by using the method of

expansion into a series in self-similar components with ¢ fixed:
3 = YU, v = yPHT(D), § = 2y, (6.2)

The representatives U; and V; are determined by the formulas given in [6, 10] and are analytic functions
at the point {,. Deformation of the variable { is not required in this case.

Plots of the functions Uy(¢) and V4(¢) are given in Fig. 3. If one sets

U=V, = U= Vs=...=0,

then the series (6.2) will contain as a particular case the flow in 2 doubly symmetric nozzle constructed in[10].

7. Let us consider the solution of Tricomi's equation:
y=y-+ Ya» Al“ = A"ks =0, B 1130 7 0.
Repeating the discussions of Secs. 2-4, one can show that (7.1) determines an NS flow.

(7.1)

Let B_gx=0; then (7.1) describes flow far from an obstacle. The equivalent uniformly valid expansion in
the physical plane is represented in deformed form as

u=y Py 1), 0=y My (), L=y 0,
C=zy—i8 kg =0,k = — 51/50, k, = — 57/50, ....

If B_.4=0, then (7.1) determines N flows of a gas in two-dimensional nozzles of the third asymptotic type
according to [5], which are characterized by the origin of a shock wave at the center. Here only the inlet part
of the flow in such a nozzle is discussed. The appropriate expansion in the x, y plane with ¢ fixed turns out to be

uniformly valid and has the form

w= g ™My Q) , 0=y TNV, (), L =2y,
ko =0,k =06,k =9,k = 12,..,,

where Uj and Vj are given by formulas given in [6, 10].
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8., We note that the solutions
y=p+my=yu+y+u

do not determine N flows. One can convince oneself of this fact by considering a particular example. let us
investigate a flow for which
y = V%m0, &= P0Gy 50 - 112y 6. 8.1)

If one fixes v (v=vy), then one can treat (8.1) as the equation of the equal-slope line in the flow plane,
which is written in terms of the parameter t. One can show that the eurve v=v, is nonanalytic at the inter-
section point with the limiting characteristic; i.e., a weak discontinuity exists in the flow {8.1). ‘

The investigation carried out above shows that the series (3.1) used to describe the flow far from an
obstacle can be supplemented with new terms containing shape parameters. These are terms generated either
by the self-similar solution with A=Y, (series (3.2)) or by the solution with )»=1/30 (series (3.3)). The solution
should be represented in deformed form in the physical plane. Since the usual method of expansion in self-
similar components was employed in [12], additional terms have not been discovered.

It has been noted in [10, 13] that the symmetry condition for the solutions y, and y; is not significant;
therefore, (4.1) and (7.1) permit constructing flows far from an obstacle, as well as in Laval nozzles, which are
asymmetrical with respect to the x axis.

The authors thank S, V. Fal'kovich for a useful discussion.
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